从前古代的时候,大约相当于中国这里的南宋,有一位意大利人叫斐波那契,他写了一本著名的算术书,书里面记载了一个兔子繁殖的问题。由这个问题衍生出了一个有趣的数列——斐波那契数列,如今这个数列从西方到东方已是广为人知。他写下的数列异乎寻常的简单:1,1,2,3,5,8,13,21,34,55,89,……
你看,只是在作加法呢!1+1=2,1+2=3,2+3=5,3+5=8。继续下去,5+8=13,8+13=21。总之,只要你愿意算,可以永无休止的算下去。这是一个既简单又奥妙的数列。
我们在前面的短文里,已经谈过这个数列隐含着甲子循环的模式。这里,我们继续作点新的思考,将数列的出发点换成任意的数字。
令F[1]=a, F[2]=b,F[n]=F[n-1]+F[n-2],这里n为从3开始的自然数。
一般来说,有F[n]=xa+yb,这里的系数x,y可以计算出来且只与n有关。接着,我们将x,y换成各自除以10的余数,所得记作f[n]。
则有f[1]=a, f[2]=b,f[n]≡f[n-1]+f[n-2](mod10)。
(一) 计算结果
计算是枯燥的,我们直接记录结果。为了看的整齐,我们排列成五列十多行的形式。总计收录了六十二个数据。
f[01]=1a+0b,f[02]=0a+1b,f[03]=1a+1b,f[04]=1a+2b,f[05]=2a+3b,
f[06]=3a+5b,f[07]=5a+8b,f[08]=8a+3b,f[09]=3a+1b,f[10]=1a+4b,
f[11]=4a+5b,f[12]=5a+9b,f[13]=9a+4b,f[14]=4a+3b,f[15]=3a+7b,
f[16]=7a+0b,f[17]=0a+7b,f[18]=7a+7b,f[19]=7a+4b,f[20]=4a+1b,
f[21]=1a+5b,f[22]=5a+6b,f[23]=6a+1b,f[24]=1a+7b,f[25]=7a+8b,
f[26]=8a+5b,f[27]=5a+3b,f[28]=3a+8b,f[29]=8a+1b,f[30]=1a+9b,
f[31]=9a+0b,f[32]=0a+9b,f[33]=9a+9b,f[34]=9a+8b,f[35]=8a+7b,
f[36]=7a+5b,f[37]=5a+2b,f[38]=2a+7b,f[39]=7a+9b,f[40]=9a+6b,
f[41]=6a+5b,f[42]=5a+1b,f[43]=1a+6b,f[44]=6a+7b,f[45]=7a+3b,
f[46]=3a+0b,f[47]=0a+3b,f[48]=3a+3b,f[49]=3a+6b,f[50]=6a+9b,
f[51]=9a+5b,f[52]=5a+4b,f[53]=4a+9b,f[54]=9a+3b,f[55]=3a+2b,
f[56]=2a+5b,f[57]=5a+7b,f[58]=7a+2b,f[59]=2a+9b,f[60]=9a+1b,
f[61]=1a+0b,f[62]=0a+1b,……
(二) 六十周期
仔细观察前面的计算结果,我们发现和从前一样,依然不变的是甲子循环模式。为了看的整齐,我们取前面的六十个数据,从新排列成四列十五行的形式。后面将看到,这样排列是有特殊意义的。
f[01]=1a+0b,f[16]=7a+0b,f[31]=9a+0b,f[46]=3a+0b,
f[02]=0a+1b,f[17]=0a+7b,f[32]=0a+9b,f[47]=0a+3b,
f[03]=1a+1b,f[18]=7a+7b,f[33]=9a+9b,f[48]=3a+3b,
f[04]=1a+2b,f[19]=7a+4b,f[34]=9a+8b,f[49]=3a+6b,
f[05]=2a+3b,f[20]=4a+1b,f[35]=8a+7b,f[50]=6a+9b,
f[06]=3a+5b,f[21]=1a+5b,f[36]=7a+5b,f[51]=9a+5b,
f[07]=5a+8b,f[22]=5a+6b,f[37]=5a+2b,f[52]=5a+4b,
f[08]=8a+3b,f[23]=6a+1b,f[38]=2a+7b,f[53]=4a+9b,
f[09]=3a+1b,f[24]=1a+7b,f[39]=7a+9b,f[54]=9a+3b,
f[10]=1a+4b,f[25]=7a+8b,f[40]=9a+6b,f[55]=3a+2b,
f[11]=4a+5b,f[26]=8a+5b,f[41]=6a+5b,f[56]=2a+5b,
f[12]=5a+9b,f[27]=5a+3b,f[42]=5a+1b,f[57]=5a+7b,
f[13]=9a+4b,f[28]=3a+8b,f[43]=1a+6b,f[58]=7a+2b,
f[14]=4a+3b,f[29]=8a+1b,f[44]=6a+7b,f[59]=2a+9b,
f[15]=3a+7b,f[30]=1a+9b,f[45]=7a+3b,f[60]=9a+1b。
(三)洛书模式
四九二
三五七
八一六
我们注意到,上面的数表中,有非常整齐的一组数据:
f[03]=1a+1b,f[18]=7a+7b,f[33]=9a+9b,f[48]=3a+3b。
这里的系数十分有规律,“一→七→九→三”正好是洛书中的数字旋转顺序。经由仔细演算,我们发现这个规律是普遍存在的,可以写成一组同余方程式。
f[n+15] ≡ 7f[n] (mod10);
f[n+30] ≡ 9f[n] (mod10);
f[n+45] ≡ 3f[n] (mod10);
f[n+60] ≡ 1f[n] (mod10)。
图片:洛书卍字
(1)数字排列沿卍字螺旋向内
f[08]=8a+3b,
f[23]=6a+1b,
f[38]=2a+7b,
f[53]=4a+9b;
(2)数字排列沿卍字螺旋向外
f[13]=9a+4b,
f[28]=3a+8b,
f[43]=1a+6b,
f[58]=7a+2b。
这里排列的两组数据,是从前面的六十周期中仔细选择出来的。需要注意的一点是:08→23→38→53,13→28→43→58,这两个序列都是依次增加15。
令人感到非常奇妙的是,这里出现的系数正好遵循洛书的数字排列。看了这个计算结果,我们很自然的想起了古代中国人的话:一六共宗,二七同道,三八为朋,四九为友。
斐波那契数列是非常奇特的一个数列,西方人从中认识到了重要常数——黄金比0.618…,这个数列也因此得名黄金数列。我们从东方古老数术文化的角度,发现这个数列竟然也与八卦与甲子与五行与洛书有关。这样看的话,这个数列的更深意义更丰富内容,还有待未来时代继续发现。